Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components

نویسندگان

  • Masato Ogura
  • Junko Yamaki
  • Miwako K. Homma
  • Yoshimi Homma
چکیده

Mitochondrial protein tyrosine phosphorylation is an important mechanism for the modulation of mitochondrial functions. In the present study, we have identified novel substrates of c-Src in mitochondria and investigated their function in the regulation of oxidative phosphorylation. The Src family kinase inhibitor PP2 {amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4d] pyrimidine} exhibits significant reduction of respiration. Similar results were obtained from cells expressing kinase-dead c-Src, which harbours a mitochondrial-targeting sequence. Phosphorylation-site analysis selects c-Src targets, including NDUFV2 (NADH dehydrogenase [ubiquinone] flavoprotein 2) at Tyr(193) of respiratory complex I and SDHA (succinate dehydrogenase A) at Tyr(215) of complex II. The phosphorylation of these sites by c-Src is supported by an in vivo assay using cells expressing their phosphorylation-defective mutants. Comparison of cells expressing wild-type proteins and their mutants reveals that NDUFV2 phosphorylation is required for NADH dehydrogenase activity, affecting respiration activity and cellular ATP content. SDHA phosphorylation shows no effect on enzyme activity, but perturbed electron transfer, which induces reactive oxygen species. Loss of viability is observed in T98G cells and the primary neurons expressing these mutants. These results suggest that mitochondrial c-Src regulates the oxidative phosphorylation system by phosphorylating respiratory components and that c-Src activity is essential for cell viability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxicity mechanisms of Cigarette Smoke on Eye and Kidney using Isolated Mitochondria

Cigarette smoking is one of the main risk factors for premature human death associated to a variety of respiratory and vascular diseases, and cancer due to containing Hundreds of toxicants. Rat mitochondria were obtained by differential ultracentrifugation and incubated with different concentrations (1, 10 and 100%) of standardized cigarette smoke extract (CSE). Our results showed that cigarett...

متن کامل

Mitochondrial AKAP121 links cAMP and src signaling to oxidative metabolism.

AKAP121 focuses distinct signaling events from membrane to mitochondria by binding and targeting cAMP-dependent protein kinase (PKA), protein tyrosine phosphatase (PTPD1), and mRNA. We find that AKAP121 also targets src tyrosine kinase to mitochondria via PTPD1. AKAP121 increased src-dependent phosphorylation of mitochondrial substrates and enhanced the activity of cytochrome c oxidase, a compo...

متن کامل

Mitochondrial AKAP121 links cAMP and src signalling to oxidative metabolism

AKAP121 focuses distinct signalling events from membrane to mitochondria by binding and targeting cAMP-dependent protein kinase (PKA), protein tyrosine phosphatase (PTPD1) and mRNA. We find that AKAP121 also targets src tyrosine kinase to mitochondria via PTPD1. AKAP121 increased src-dependent phosphorylation of mitochondrial substrates and enhanced the activity of cytochrome c oxidase, a compo...

متن کامل

Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death.

Hypoxia is a prominent feature of solid tumor development and is known to stimulate mitochondrial ROS (mROS), which, in turn, can activate hypoxia-inducible transcription factor-1alpha and nuclear factor-kappaB (NF-kappaB). Because NF-kappaB plays a central role in carcinogenesis, we examined the mechanism of mROS-mediated NF-kappaB activation and the fate of cancer cells during hypoxia after m...

متن کامل

Assessment of mitochondrial functions and cell viability in renal cells overexpressing protein kinase C isozymes.

The protein kinase C (PKC) family of isozymes is involved in numerous physiological and pathological processes. Our recent data demonstrate that PKC regulates mitochondrial function and cellular energy status. Numerous reports demonstrated that the activation of PKC-a and PKC-ε improves mitochondrial function in the ischemic heart and mediates cardioprotection. In contrast, we have demonstrated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 447  شماره 

صفحات  -

تاریخ انتشار 2012